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This section serves as an introduction to our comprehensive exploration of artificial
intelligence. We'll provide an overview of key concepts, history, and the impact of Al
and machine learning technologies in various sectors.
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TURING TEST
Computer scientist
Alan Turing proposes a
test for machine
intelligence, i a
machine can trick
humansg into thinking it
is human, then it has
intelligence
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1955

A.l. BORN

Term ‘artificial
intedligence’ s coined
by computer scientist,
John McCarthy to
describe “the science
and engineering of
making intelligent
machines”

1961

UNIMATE

First industnial robot,
Unimate, goes to work
at GM replacing
humans on the
assombly line

1964

ELIZA

Pioneenng chatbot
developed by Joseph
Weizenbaum at MIT
holds conversations
with humans

1966

SHAKEY

The 'first electronic
person’ from Stanford,
Shakey is a general-
purpose mobide robot
that ressons about

s own actions

A.l
WINTER

Many false starts and
dead-ands leave Al out
in the cold

1997

DEEP BLUE

Deep Blue, a chess-
playing computer from
I1BM defeats world chess
champion Garry
Kasparov

Loh
N

1998

KISMET

Cynthia Breazeal st MIT
introduces KiSmet, an
emotionally intelligent
robot insofar as it
detects and responds
10 people’s feelings

<0 AlphaGo

1999

AIBO
Sony launches first

consumer robot pet dog

AIBO (Al robot) with
skills and personality
that develop over time

2002

ROOMBA

First mass produced
autonomous robotic
vacuum cleaner from

iRobot learns to navigate

and clean homes

2011

SIRI

Apple integrates Siry,
an intelligent virtual
assistant with a voce
interface, into the
Phone 45

2011

WATSON

1BM's question
answearing computer
Watson wins first place
on popular $1M prize
tedevision quiz show
Jeopardy

2014

EUGENE

Eugene Goostman, a
chatbot passes the
Tunng Test with a third
of judges believing
Eugene is human

2014

ALEXA

Amazon launches Alexa,
an intefligent vinual
assistant with a voice
interface that completes
shopping tasks

Microsoft’s chatbot Tay
goas rogue on social
media making
inflammatory and
offensive racst
comments

2017

ALPHAGO
Google’s Al AlphaGo
beats world champion
Ke Jie in the complex
board game of Go
notable for its vast
number (2'79) of
possible positions



Text to text: ChatGPT
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Introduction
Text to image: Midjourney

October 15, 2022 March 05, 2023

‘A young woman with vibrant red hair and striking blue eyes stands amidst a gentle
snowfall, medieval-inspired armor, ...”



Text to video: Sora

ay they continue to make fife
interesting’;
- and may they cortinue to

March 30, 2023 February 15, 2024

“A movie trailer featuring the adventures of the 30 year old space man wearing a red wool
knitted motorcycle helmet, blue sky, salt desert, cinematic style shot on 35mm film, ...”


http://www.youtube.com/watch?v=anmuklFtu8U
http://www.youtube.com/watch?v=Q1_jiQhbCO0
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This section explores the fundamentals of Machine Learning, covering key concepts
and techniques used to enable machines to learn from data.




Machine Learning
Three main paradigms

“Machine Learning is a field of study that gives computers the ability to learn without
being explicitly programmed”-arthur Samuel (1959)
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Supervised learning
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Machine Learning
Supervised learning: Perceptron
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Machine Learning
Unsupervised learning

Unsupervised learning is a type of machine learning where models discover patterns in data
without pre-existing labels, often used for clustering or dimensionality reduction.
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Machine Learning

Unsupervised learning: K-Means / PCA

Iteration #01
(inertia: 3622.78)

K-Means PCA



Machine Learning
Reinforcement learning

Reinforcement Learning is a machine learning method where an agent learns optimal
actions through trial and error to maximize rewards in an environment.
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http://www.youtube.com/watch?v=Dw3BZ6O_8LY

In this section, we focus on Deep Learning, a subset of machine learning that utilizes
neural networks with many layers. We'll examine how deep learning models can
learn complex patterns and perform tasks like image and speech recognition.




Neural Networks (NNSs)

A computational model inspired by the human brain's structure, and consists of layers of
interconnected nodes or neurons that process and transmit signals to solve tasks.

Single-layer perceptron Wibten e €4 Wabden Lapar & 4

Multi-layer perceptron



Deep Learning
Convolutional Neural Networks: What is a convolution

Convolution involves sliding a smaller array, known as a kernel or filter, over a larger array (the
input signal or image) to produce a new array called the convolved feature or feature map.
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Deep Learning
Convolutional Neural Networks (CNNSs)
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Deep Learning
Convolutional Neural Networks: Task
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Deep Learning
Recurrent Neural Network (RNNs)

CNNs struggle with time seriesbecause they don't naturally keep track of the order of things.
They treat input data as if all parts are independent and don't have a built-in way to remember
what happened in the previous steps of a sequence.

Recurrent Neural Network Feed-Forward Neural Network



Deep Learning

Recurrent Neural Networks: LSTM
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Deep Learning

Recurrent Neural Networks: Task
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Deep Learning
Generative Neural Network (GANS)

A class of models designed to generate new data that is similar to the training data they've been
fed. They learn the underlying distribution of a dataset and then use this knowledge to produce
new instances that could plausibly come from the same distribution.

GAN: Adversarial % X Discriminator @ " Generator X!
training D(x) G(z)
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Deep Learning
Generative Neural Networks: Task

Generated Samples
by Our Conditional GAN
Denoising Medel

PolXgixy) Polxalxz) PolXolXz) PolXalxy)

The website 7his Person Does Not Existwas created in February 2019. It uses GANS, to generate highly
realistic images of human faces of people who do not actually exist. Atips.//this-person-does-not-
exiIst.conven



https://this-person-does-not-exist.com/en

Here, we discuss the process of training machine learning models, including data
preparation, model selection, and the use of algorithms to optimize model
performance. We'll also cover strategies to avoid common pitfalls like overfitting.




Training
Gradient descent

Is an optimization algorithm that iteratively adjusts parameters to minimize a cost function,
moving in the direction of steepest decrease.




Cost (or loss) function

A mathematical function that measures the difference between the algorithm's predictions and
the actual data. It guides the optimization process by quantifying the model's performance.
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Training
Gradient descent

Is an optimization algorithm that iteratively adjusts parameters to minimize a cost function,
moving in the direction of steepest decrease.

Local minima  Global minima



Training
Learning rate

An hyperparameter that controls the adjustment of model weights during training. It
determines the size of the steps the algorithm takes to reach the minimum of the loss function.

Descending with step coefficient 0.005 (iteration 50) Descending with step coefficient 0.05 (iteration 50)
fix) = 2 sin(x) fix) = X2 sin(x)
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Backpropagation

An algorithm used to calculate the gradient of the loss function with respect to each weight by
the chain rule, efficiently propagating the error backward through the network.

Input Layer Hidden Layer




Training

Backpropagation

An algorithm used to calculate the gradient of the loss function with respect to each weight by
the chain rule, efficiently propagating the error backward through the network.
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Training

Overfitting and underfitting

Overfitting Right Fit Underfitting

Classification

Regression . 12




Training
Generalization

Model's ability to perform well on new, unseen data after being trained on a specific dataset. It
measures the effectiveness in applying learned patterns to novel inputs outside the training set.

Alﬂ«ﬁ’ﬁ'

Training data Testing data
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Training
Generalization: Set splitting

A process a dataset is divided into separate subsets to ensure that models are trained on one
set of data and tested on unseen data to evaluate performance and generalize ability.

{ validation data @ Test data

@ Training data




Training
Generalization: Data augmentation

A technique to increase the diversity of training data by applying various transformations, such
as rotation, scaling, and flipping, to existing samples. This helps improve model robustness and
generalization by simulating a wider range of input scenarios.

Original Augmentation



Training
Generalization: Regularization

A technique used to prevent overfitting by adding a penalty on the size of the parameters. It
encourages simpler models during training, which can generalize better on unseen data.
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This section delves into the wide range of applications for machine learning and
deep learning in seismology.
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Applications

Earthquake classification
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Applications
Earthquake classification: Methods
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Earthquake classification: Results

2 classes 2 classes
Foreshooks N Atarshecks
n
"0
2
g 100
3
3
-
g W
£
3 a0
z
a0
0 6
0
Fomt cckn Abwrsteocks
9 classes 9 classny @
FEQ1 FEQ FEQS | FEOY W Veso AEQ1 AECY EEE AEQN  EE AEOH
208 0

Number of events

I

— e L

O B PRGI PEGR PRI PROH Viven ANTII ARGP APGO ABTDE




Applica

tions

Earthquake classification: Validation
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False mainshock date experiment examples
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Applications
Cold Diffusion model: Method's

Our research explores adapting the Cold Diffusion model for seismic denoising, tailoring it to
overcome the challenge of non-Gaussian noise in seismic data, promising enhanced signal
recovery.
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Applications

Cold Diffusion model: Quantitative results
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Applications
Cold Diffusion model: Qualitative results
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Now it's your turn to apply machine learning to seismology!
If you have any ideas or questions, here are our contact details:

Gabriele Paoletti Elisa Tinti Daniele Trappolini

gabriele.paoletti@uniroma.it elisa.tinti@uniromal.it daniele.trappolini@uniroma.it




