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This section serves as an introduction to our comprehensive exploration of artificial
intelligence. We'll provide an overview of key concepts, history, and the impact of Al
and machine learning technologies in various sectors.



/A.l. TIMELINE
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TURING TEST A.l. BORN UNIMATE ELIZA SHAKEY DEEP BLUE KISMET

Computer scientist Term ‘artificial First industrial robot, Pioneering chatbot The ‘first electronic WI NTER Deep Blue, a chess- Cynthia Breazeal at MIT
Alan Turing proposes a  intelligence’is coined ~ Unimate, goes to work  developed by Joseph  person’ from Stanford, Many false starts and playing computer from  introduces KISmet, an
test for machine by computer scientist,  at GM replacing Weizenbaum at MIT Shakey is a general- dead-ends leave Al out |BM defeats world chess emotionally intelligent
intelligence. If a John McCarthy to humans on the holds conversations purpose mobile robot ;410 014 champion Garry robot insofar as it
machine can trick describe “the science assembly line with humans that reasons about Kasparov detects and responds
humans into thinking it  and engineering of its own actions to people’s feelings

is human, then it has making intelligent

intelligence machines”

<0+ AlphaGo
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Sony launches first First mass produced Apple integrates Siri, IBM's question Eugene Goostman, a Amazon launches Alexa, Microsoft's chatbot Tay ~ Google's A.l. AlphaGo
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skills and personality iRobot learns to navigate interface, into the on popular $1M prize of judges believing interface that completes inflammatory and board game of Go,

that develop overtime  and clean homes iPhone 4S television quiz show Eugene is human shopping tasks offensive racist notable for its vast
Jeopardy comments number (2179) of
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Al Research

Nobel Prize in Physics 2024 Nobel Prize in Chemistry 2024
John Hopfield and Geoffrey Hinton David Baker, Demis Hassabis e John M. Jumper

“None of them are chemists or physicists; they are all data scientists.”



Introduction

Al Research

How they do
that?




Introduction
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How do we see the world?
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How do we see the world?
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Text to text: ChatGPT

Google

san f

san francisco weather

san francisco

san francisco giants

san fernando valley

san francisco state university
san francisco hotels

san francisco 49ers

san fernando

san fernando mission

san francisco zip code

Google Search I'm Feeling Lucky

December 10, 2004

(=

@ You

tell me about san francisco

ChatGPT

San Francisco, officially the City and County of San Francisco, is a cultural, commercial, and
financial center in the state of California, United States. Known for its cool summers, fog, steep
rolling hills, eclectic mix of architecture, and landmarks including the Golden Gate Bridge, cable
cars, Alcatraz Island, and its Chinatown district, San Francisco is also the headquarters of five

major banking institutions and various other companies such as Twitter, Uber, and Salesforce.

The city covers a land area of about 46.9 square miles (121 km?) on the northern end of the San
Francisco Peninsula in the San Francisco Bay Area, making it the smallest county—and the only

consolidated city-county—within the state. As of the last U.S. Census, San Francisco had a

population of over 800,000, making it the 17th most populous city in the United States. The larger

metropolitan area, which includes Oakland and San Jose, is the fifth most populous in the U.S.,

November 30, 2022

“Tell me about San Francisco”



Introduction
Text to image: Midjourney

October 15, 2022 March 05, 2023

“A young woman with vibrant red hair and striking blue eyes stands amidst a gentle
snowfall, medieval-inspired armor, ...”



Text to video: Sora

— 1T LN

B ay they continue to make fife
interesting
. and may they cortinue to

March 30, 2023 February 15, 2024

“A movie trailer featuring the adventures of the 30 year old space man wearing a red wool
knitted motorcycle helmet, blue sky, salt desert, cinematic style, shot on 35mm film, ...”


http://www.youtube.com/watch?v=anmuklFtu8U
http://www.youtube.com/watch?v=Q1_jiQhbCO0
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Artificial intelligence
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Machine Learning
Three main paradigms

“Machine Learning is a field of study that gives computers the ability to learn
without being explicitly programmed” ~Arthur samuel (1959)

Supervised Unsupervised Reinforcement
Learning Learning Learning

Model training with labelled data Madel training with unlabelled data
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Supervised learning

( Labeled Data \
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Machine Learning
Supervised learning: Perceptron
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Machine Learning
Unsupervised learning

Unsupervised learning is a type of machine learning where models discover patterns in data
without pre-existing labels, often used for clustering or dimensionality reduction.
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Machine Learning

Unsupervised learning: K-Means / PCA

Iteration #01
(inertia: 3622.78)




Machine Learning
Reinforcement learning

Reinforcement Learning is a machine learning method where an agent learns optimal
actions through trial and error to maximize rewards in an environment.

environment

)\

actions

>
rewards

observations



http://www.youtube.com/watch?v=Dw3BZ6O_8LY

Linear Regression

In this section, we focus on Linear Regression, one of the fundamental techniques in machine
learning used for predictive modeling. Linear regression aims to model the relationship between a
dependent variable and one or more independent variables by fitting a linear equation to the
observed data. We'll explore how linear regression helps to predict outcomes, analyze trends, and
estimate values by learning from the underlying patterns in the data.



Linear Regression

Probability vs Likelihood
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Linear Regression
Maximum Likelihood Estimator

Maximum likelihood estimate plot
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Sales

Linear Regression
Ordinary Least Square
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Training
Gradient descent

Is an optimization algorithm that iteratively adjusts parameters to minimize a cost function,
moving in the direction of steepest decrease.

steep slope
Value of D is high
So take large steps
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Cost (or loss) function

A mathematical function that measures the difference between the algorithm's predictions and
the actual data. It guides the optimization process by quantifying the model's performance.
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Training
Gradient descent

Is an optimization algorithm that iteratively adjusts parameters to minimize a cost function,
moving in the direction of steepest decrease.

Local minima  Global minima




Learning rate

An hyperparameter that controls the adjustment of model weights during training. It
determines the size of the steps the algorithm takes to reach the minimum of the loss function.

+ Descending with step coefficient 0.005 (iteration 50) Descending with step coefficient 0,05 (iteration 50)
- - - T -+ 30
) = %2 * sin{x) fx) = x2 * sin(x)

20t 1 20

10t Start (2.5,3.7) y 10 Start (2.5,3.7)

30 . . .  End(49.237, a " End(G4,22.1)
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Linear Regression
Evaluate Regression

call:
Im(formula = height ~ age, data = ageandheight)
Residuals:

Min 1Q@ Median 3Q Max

-0.27238 -0.24248 -0.02762 0.16014 0.47238

conefficients:

Estimate|std. Error |t value Pr(z|t])
(Intercept) 64.9283 0.5084| 127.71 < 2e-16 #*%%
age 0.6350 0.0214 29.66 4.43e-11 #*%¥%
Signif: codes:: O “22x% 05001 “2x% 0001 **%0008 S0 ¥ %A

Residual standard error: 0.256 on 10 degrees of freedom

Multiple R-squared: 0.9888, Adjusted R-squared: 0.9876

F-statistic: 880 on 1 and 10 DF, p-value: 4.428e-11




Evaluate Regression
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o (TSS L RSS)/]) :;:;ationship with the target variable
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Linear Regression

GAUSS MARKOV PROBLEM 1
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Linear Regression

GAUSS MARKOV PROBLEM 2

Residual Plot for Linear Fit

Residual Plot for Quadratic Fit
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Instrumental Variable

SOLUTION:

Difficult to detect and to solve,

COVARIANCE of the Residual not null.
frequently in time series.

PROBLEM:

0.0

Observation

GAUSS MARKOV PROBLEM 3

Linear Regression
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Linear Regression

OTHER PROBLEM 4
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Linear Regression

OTHER PROBLEM 5
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Linear Regression

OTHER PROBLEM 6
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PROBLEM:

COLLINEARITY AND MULTICOLLINEARITY

HOW TO
DETECT:

1. Covariance Matrix
2.

T1 T T3

Coefficient  Std. error t-statistic
Intercept —173.411 43.828 —3.957
age —2.292 0.672 —3.407
limit 0.173 0.005 34.496
Intercept —377.537 45.254 —8.343
rating 2.202 0.952 2.312
limit 0.025 0.064 0.384
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In this section, we focus on Deep Learning, a subset of machine learning that utilizes
neural networks with many layers. We'll examine how deep learning models can
learn complex patterns and perform tasks like image and speech recognition.
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In this section, we focus on Deep Learning, a subset of machine learning that utilizes
neural networks with many layers. We'll examine how deep learning models can
learn complex patterns and perform tasks like image and speech recognition.



Neural Networks (NNs)

A computational model inspired by the human brain's structure, and consists of layers of
interconnected nodes or neurons that process and transmit signals to solve tasks.
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Deep Learning
Convolutional Neural Networks: What is a convolution

Convolution involves sliding a smaller array, known as a kernel or filter, over a larger array (the
input signal or image) to produce a new array called the convolved feature or feature map.

I Feature Extraction Classification

Convolution+Activation Function Max Pooling

Fully Connected Layers I



Deep Learning
Convolutional Neural Networks (CNNs)

Pooling Pooling Pooling

Convolution Convolution  Convolution ?ffri,ﬁatl%"
+ + +
Kernel RelU RelU RelU
Fully
Feature Maps > -———Connected !
Layer
|| | |
Feature Extraction Classification Probabilistic

Distribution



Deep Learning
Convolutional Neural Networks: Task

Classification Classm.catl.on Object detection Instance segmentation
Localization

CAT, DOG, DUCK CAT, DOG, DUCK

A N P
Y

Single object Multiple objects




Deep Learning
Recurrent Neural Network (RNNs)

CNNs struggle with time series because they don't naturally keep track of the order of things.
They treat input data as if all parts are independent and don't have a built-in way to remember
what happened in the previous steps of a sequence.

Recurrent Neural Network Feed-Forward Neural Network



Recurrent Neural Networks: LSTM

Input Gate Output Gate
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output for
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Deep Learning
Recurrent Neural Networks: Task

one to many many to one many to many many to many
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captioning analysis machine translation
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Generative Neural Network (GANS)

A class of models designed to generate new data that is similar to the training data they've been
fed. They learn the underlying distribution of a dataset and then use this knowledge to produce
new instances that could plausibly come from the same distribution.

GAN: Adversarial ’ Discriminator @ Generator ’
& i3 X X VA X
training D(x)

VAE: maximize X Encoder W - A( Decoder -
variational lower bound q(2(x) J L po(x|2)

Diffusion models:
Gradually add Gaussian X0 X1 Xoll =020 s Z

. - - - - - —— - ——- - - -
noise and then reverse




Generative Neural Networks: Task

Diffused
Data Sample

Generated Samples
by Our Conditional GAN
Denoising Model

Ca A
p V27 gl
Po(Xolx4)

PoColxs)  Polxolxa) Po(xolxs)
The website This Person Does Not Exist was created in February 2019. It uses GANS, to generate highly
realistic images of human faces of people who do not actually exist.
https.//this-person-does-not-exist.com/en



https://this-person-does-not-exist.com/en

Here, we discuss the process of training machine learning models, including data
preparation, model selection, and the use of algorithms to optimize model
performance. We'll also cover strategies to avoid common pitfalls like overfitting.



Backpropagation

An algorithm used to calculate the gradient of the loss function with respect to each weight by
the chain rule, efficiently propagating the error backward through the network.

Input Layer Hidden Layer Output Layer




Training

Backpropagation

An algorithm used to calculate the gradient of the loss function with respect to each weight by
the chain rule, efficiently propagating the error backward through the network.

m =-8.00 b =-8.00

Error = 370.77 15

Bl 2.0




Training

Overfitting and underfitting

Overfitting Right Fit Underfitting

Classification

Regression .




Training
Generalization

Model's ability to perform well on new, unseen data after being trained on a specific dataset. It
measures the effectiveness in applying learned patterns to novel inputs outside the training set.

Training data Testing data



Training
Generalization: Set splitting

A process a dataset is divided into separate subsets to ensure that models are trained on one
set of data and tested on unseen data to evaluate performance and generalize ability.

' Training data ‘ Validation data . Test data




Training
Generalization: Data augmentation

A technique to increase the diversity of training data by applying various transformations, such
as rotation, scaling, and flipping, to existing samples. This helps improve model robustness and
generalization by simulating a wider range of input scenarios.

\

Original Augmentation



Training
Generalization: Regularization

A technique used to prevent overfitting by adding a penalty on the size of the parameters. It
encourages simpler models during training, which can generalize better on unseen data.

Overfitting

Right Fit

Regularization

=




This section delves into the wide range of applications for machine learning and deep
learning in seismology.
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Applications
Earthquake classification
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Applications
Earthquake classification: Methods
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Earthquake classification: Results
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Applications
Earthquake classification: Validation

False mainshock date experiment examples
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Applications

Cold Diffusion model: Methods

Our research explores adapting the Cold Diffusion model for seismic denoising, tailoring it to
overcome the challenge of non-Gaussian noise in seismic data, promising enhanced signal
recovery.

Diffusion Process Input Assumptions
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Applications

Cold Diffusion model: Quantitative results

SNR after denoising
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Cold Diffusion model: Qualitative results

Trace: 3725 ch: Z | sampling_300

Trace: 3725 ch: Z | deep_denoiser
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Now it's your turn to apply machine learning to seismology!
If you have any ideas or questions, here are our contact details:

Daniele Trappolini Giacomo Mastella

daniele.trappolini@uniroma1.it giacomo.mastella@uniroma1.it




